Combinatorial thermal platform for study of polythiophene thin film structure and OFETs

Leah A. Lucas

Materials Science and Engineering & Flexible Display Center, Arizona State University

ACS Organic Thin Films for Photonic Applications 13 September 2006 3:20PM

Prof. Ghassan E. Jabbour jabbour@asu.edu

Dean DeLongchamp dean.delongchamp@nist.gov

Flexible Display Center ARIZONA STATE UNIVERSITY

http://flexdisplay.asu.edu

Leah Lucas

Joe Kline

Eric Lin

Brandon Vogel

Iain McCulloch Martin Heeney

Surface and Microanalysis, CSTL Lee Richter

Ceramics Division, MSEL (NSLS Station) Dan Fischer

Mike Fasolka

Organic Electronics

Alternative technology to Si-based

- Lower performance, disposable applications
- Potential advantage → cheaper processing costs
- Solution, large area & R2R processing (flexible substrates)
- New form functionality → conformable, rollable, lightweight

The dominant role of structure

... and on to circuits

- Structural knowledge required to understand & control electronic properties
- Data needed over multiple length scales

Compromise carrier mobility, device performance, and reliability.

Our goal: correlate processing to structure to performance, with quantifiable structural measurements.

How can we assess structure of organic semiconductors **especially at the buried interface**?

Truly high performance polymer semiconductors

poly(2,5-bis(3-alkylthiophen-2-yl) thieno[3,2-b]thiophenes) (**pBTTT**)

- Solution processible
- Saturation hole mobility 0.2 to 0.6 cm²/V-s (comparable to a-Si)
- Improved mobility after annealing to liquid crystal

	M _N /M _W (Da)
pBTTT-C ₁₀	27,400 / 62,700
pBTTT-C ₁₂	29,600 / 54,000
pBTTT-C ₁₄	28,000 / 61,000
pBTTT-C ₁₈	26,100 / 41,800
<i>DP</i> ≈ 40 - 43	

Typical Saturation Mobility & Vt

- No exotic dielectric (octyltrichlorosilane on oxide)
- No exotic post-spinning treatments (other than annealing)
- Simple processing Just spin and anneal
- In agreement with Merck measurements

What is behind the high performance of the pBTTT? How can we quantitatively assess its structure?

 μ_{AVG} (cm²/V·s)

8

9

	171101
pBTTT-C ₁₀	~0.2
pBTTT-C ₁₂	~0.3
pBTTT-C ₁₄	~0.4
pBTTT-C ₁₈	~0.2

NEXAFS for structure and chemistry

Near-Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy

Strengths for Organic Electronics:

- Detects C, N, O, & F bonds.
 High sensitivity to π bonding.
- Directly measures molecular orientation.
- · Depth sensitive.
- Collects chemistry and orientation information simultaneously.
- Detects defects.

Does NOT measure:

- Crystal packing style, prevalence, size, shape.
- HOMO, bandgaps.
- Secondary chemical interactions (e.g. vib / rot structure).

A powerful technique complementary to AFM, GIXD, and *XPS*.

Often sufficient for solo investigations.

NEXAFS - Conjugated plane tilt

Resonance Intensity:

$$I(\Theta) = \int_{peak} PEY(\Theta)$$

Dichroic Ratio:

$$R = \frac{I(90^{\circ}) - I(0^{\circ})}{I(90^{\circ}) - I(0^{\circ})}$$

Edge-On

Plane-On

Ex-situ bottom interface orientation measurement w/ NEXAFS

Chabinyc et al. JACS, 2004, 126, 13928

- Bottom interface orientation is very similar to top interface orientation. (Remember films are ~20 nm thick)
- pBTTTs have more vertical conjugated plane than P3HT
- But, the conjugated plane orientation is *not* as vertical as for pentacene / oligothiophenes (R=0.5-0.6)

Consistent side chain orientation from two spectroscopies

Polymer long axis orientation by Spectral Ellipsometry

- The $\pi \rightarrow \pi *$ excitation is oriented along the conjugated long axis.
- pBTTT films exhibit **substantial** long-axis orientation within the substrate plane.

Specular X-ray diffraction reveals molecular layers

- Clear indication of regularly spaced layers with different electron density.
- Lamellae of packed cores separated from lamellae of packed side chains.
 Also consistent w/ long axis orientation.
- d-spacing ~2.1 nm
- 4 orders of diffraction from 20 nm thick films - indicates highly ordered and oriented structure!

Atomic force micrographs of annealed films reveal wide terraces of molecular height

We now know the plane tilt, side chain orientation, the long axis tilt, lamellar packing w/ spacing, and lateral distribution of terraced domains.

Bringing it together: detailed microstructure of pBTTT-C14

- AFM and X-ray diffraction indicate comprehensive crystallinity of a single type.
- We can assume a narrow, monomodal orientation distribution and extract tilts from spectroscopies
- Further details: DeLongchamp, D. M. et al., Advanced Materials, in press, 2007

Combinatorial approach:

How does temperature affect the structure and OFET properties?

- Distinct structure/morphology difference in as-cast vs. annealed pBTTT films
- Previous structure study used arbitrary annealing temperature
- Combinatorial methods provide means to access this wide parameter space

Apply a temperature gradient to systematically evaluate the influence of thermal history on pBTTT-C12 OFETs

pBTTT-C12 OFET fabrication & thermal gradient

- pBTTT-C₁₂ spin coated from warm dichlorobenzene onto OTS-SiO₂
- Top contact gold S/D electrodes
 - Channel width (W) = 1 or 2 mm
 - Channel length (L) = 80 to 220 μ m
- Thermal gradient anneal in nitrogen
 - $-\Delta T \sim 75^{\circ}C$
 - Heated for 5 min, cooled to 80 °C (15 min)
- OFET characterization in N₂ purge

$$I_D = \frac{WC_i}{2L} \mu (V_G - V_T)^2$$

OFET characterization of pBTTT-C12

- Each pixel represents individual OFET (230 OFETs processed simultaneously)
- Gray pixels represent OFET with excessive gate leakage
- Mobility increases with temperature with transition region (160 to 165)°C
- Highest mobility ~ 0.3 cm²V⁻¹s⁻¹

Differential Scanning Calorimetry of pBTTT-C12

- Increased μ coincides with heating into LC phase (DSC)
- Powder DSC reveals melting transition from crystalline solid to liquid crystal occurs at 150-160°C

Atomic Force Microscopy of pBTTT-C12

Scale bar = 500 nm, $\triangle Z = 7$ nm

- As cast-films are featureless
- Lamellar terraces(~2 nm height) form during annealing
- Step height corresponds to lamellar spacing

NEXAFS of pBTTT-C12

Edge-on orientation of conjugated plane increases with temperature due to decrease in disorder of the film

0.60

0.55

0.50

Conclusions

- Improved OFET characteristics result from increased crystalline domain size and molecular ordering when pBTTT-C12 heated into LC state
- Smooth correlation (temperature, structure) made possible by use of combinatorial temperature gradient
- Robust and practical method in new materials development
 - lowest thermal budget necessary
 - screening materials with multiple thermal transitions
 - optimize OFET performance
- Lucas, L. A. et al, Appl. Phys. Lett.
 90, 012112, 2007

Acknowledgements

*NIST Combinatorial Methods Center Bell Labs Graduate Research Fellowship Program, Mentor: Alice White